European Space Agency week in images Jan 11 to Jan 15, 2021

#ESA; #StormFilomena; #Colka; #lunarTelecommunications; #ARTES; #HubbleArchive; #XMMNewton; #BioAsteroid; #TanezrouftBasin

France/Canadian-Media: Originated in 1975, European Space Agency (ESA) is situated in the northeast of South America in French Guiana and is an overseas department of France and since then ESA has continued to fund two-thirds of the spaceport’s annual budget to finance the operations and the investments needed to maintain the top-level services provided by the Spaceport. ESA also finances new facilities, such as launch complexes and industrial production facilities, for new launchers such as Vega-C and Ariane 6.

European Space Agency week in images Jan 11 to Jan 15, 2021

Captured by the Copernicus Sentinel-2 mission on 11 January 2021 at 12:14 CET, this image of Madrid in Spain appears to have been taken in black and white. In fact, it is a true-color image — but the heaviest snowfall in 50 years has blanketed the region, turning the landscape white.

Storm Filomena hit Spain over the weekend, blanketing parts of the country in thick snow and leaving half of the country on red alert. Madrid, one of the worst affected areas, was brought to a standstill with the airport having to be closed, trains canceled and roads blocked.

Although this satellite image was taken after the storm had passed, it is clear to see that much snow still remains, especially in the outskirts of the city. For example, some runways at the airport, which is visible in the top-right of the image, are still covered by snow. The unusually cold weather on the Iberian Peninsula is expected to last until later this week with temperatures forecasted to plunge to –12°C. The race is on to clear roads so that supplies of essential goods such as food supplies and Covid vaccines can be delivered.

Copernicus Sentinel-2 is a two-satellite mission. Each satellite carries a high-resolution camera that images Earth’s surface in 13 spectral bands. Together they cover all Earth’s land surfaces, large islands, inland and coastal waters every five days at the equator.

Prepping for a spacewalk typically means diving underwater to rehearse and fine-tune operations.

In 2016, ESA astronaut Alexander Gerst performed such an underwater rehearsal for the Colka high-speed radio, the brown box imaged above, that will be installed this month on the International Space Station.

NASA astronauts Mike Hopkins and Victor Glover will integrate the small fridge-sized device outside the European Columbus module during a spacewalk scheduled this year. ESA astronaut Andreas Mogensen will be at NASA’s mission control directing the spacewalkers as Capcom. The Columbus Ka-band terminal, nicknamed ‘Colka’, will enable faster communication with Europe.

Orbiting the planet every 90 minutes means the Space Station is constantly making and breaking short links with ground stations on Earth as it passes over them at a height of 400 km.

With Colka, a European telecommunications satellite in geostationary orbit can pick up data sent from the Columbus module. This satellite is part of the European Data Relay System and will be able to directly relay the signals from Columbus to European soil via a ground station in Harwell, in the UK.

The current data relay system routes via the USA, which results in longer data transfer times. The Colka upgrade will ensure faster communications between Columbus and Europe, speeds of up to 50 Mbit/s for downlink and up to 2 Mbit/s for uplink. This will allow astronauts and researchers to benefit from a direct link with Europe at home broadband speeds — delivering a whole family’s worth of video streaming and data for science and communications.

Colka will be installed just weeks after the announcement that Europe will start building a communications module in support of the Gateway, the next spaceship to be assembled and operated in the vicinity of the Moon by International Space Station partners. The ESPRIT High-speed Lunar Communication System will be launched on NASA’s Gateway living quarters, in 2024.

As humankind ventures farther from Earth and go forward to the Moon, a robust communications infrastructure is necessary for the lunar economy and to return knowledge and benefits to Earth. ESA is working on this with the Moonlight project, a system for lunar telecommunications and navigation to reduce design complexity, liberating missions to concentrate on their core activities.

Colka was designed and built by British and Italian companies, using products from Belgium, Canada, France, Germany, and Norway, some of which have been qualified under the ESA’s program of Advanced Research in Telecommunications Systems (ARTES).

The heavy snowfall that hit Spain a few days ago still lies heavy across much of the country as this Copernicus Sentinel-3 satellite image shows.

While the idea of snuggling under a blanket in the cold winter months is very appealing, the blanket that covers half of Spain is not remotely comforting. This satellite image, captured on 12 January at 11:40 CET, shows how much of the country is still facing hazardous conditions following the snow that fell at the weekend — the heaviest snowfall the country has had in five decades.

Storm Filomena hit Spain over the weekend, covering a large part of the country in thick snow. Madrid one of the worst affected areas (see satellite image), was brought to a standstill with the airport having to be closed, trains canceled and roads blocked.

People in central Spain are struggling as a deep freeze follows the heavy snow. Yesterday, the temperature plunged to –25°C in Molina de Aragón and Teruel, in mountains east of Madrid — Spain’s coldest night for at least 20 years.

Copernicus Sentinel-3 is a two-satellite mission. Each satellite carries a suite of cutting-edge instruments to measure systematically Earth’s oceans, land, ice, and atmosphere to monitor and understand large-scale global dynamics. For example, with a swath width of 1270 km, the ocean and land color instrument, which acquired the two tiles for this image, provides global coverage every two days.

The NASA/ESA Hubble Space Telescope has observed the supernova remnant named 1E 0102.2–7219. Researchers are using Hubble’s imagery of the remnant object to wind back the clock on the expanding remains of this exploded star in the hope of understanding the supernova event that caused it 1700 years ago.

The featured star that exploded long ago belongs to the Small Magellanic Cloud, a satellite galaxy of our Milky Way located roughly 200 000 light-years away. The doomed star left behind an expanding, gaseous corpse — a supernova remnant — known as 1E 0102.2–7219.

Because the gaseous knots in this supernova remnant are moving at different speeds and directions from the supernova explosion, those moving toward Earth are colored blue in this composition and the ones moving away are shown in red. This new Hubble image shows these ribbons of gas speeding away from the explosion site at an average speed of 3.2 million kilometers per hour. At that speed, you could travel to the Moon and back in 15 minutes.

Researchers have studied the Hubble archive looking for visible-light images of the supernova remnant and they have analyzed the data to calculate a more accurate estimate of the age and center of the supernova blast.

According to their new estimates, light from this blast arrived at Earth 1700 years ago, during the decline of the Roman Empire. This supernova would only have been visible to inhabitants of Earth’s southern hemisphere. Unfortunately, there are no known records of this titanic event. Earlier studies proposed explosion dates of 2000 and 1000 years ago, but this new analysis is believed to be more robust.

To pinpoint when the explosion occurred, researchers studied the tadpole-shaped, oxygen-rich clumps of ejecta flung out by this supernova blast. Ionized oxygen is an excellent tracer because it glows brightest in visible light. By using Hubble’s powerful resolution to identify the 22 fastest moving ejecta clumps or knots, the researchers determined that these targets were the least likely to have been slowed down by passage through interstellar material. They then traced the knots’ motion backward until the ejecta coalesced at one point, identifying the explosion site. Once that was known, they could calculate how long it took the speedy knots to travel from the explosion center to their current location.

Hubble also measured the speed of a suspected neutron star — the crushed core of the doomed star — that was ejected from the blast. Based on the researchers’ estimates, it must be moving at more than 3 million kilometers per hour from the center of the explosion to have arrived at its current position. The suspected neutron star was identified in observations with the European Southern Observatory’s Very Large Telescope in Chile, in combination with data from NASA’s Chandra X-ray Observatory.

This image shows a new type of star that has never been seen before in X-ray light. This strange star formed after two white dwarfs — remnants of stars like our Sun — collided and merged. But instead of destroying each other in the event, the white dwarfs formed a new object that shines bright in X-ray light.

A team of astronomers led by Lidia Oskinova of the University of Potsdam, Germany, used ESA’s XMM-Newton X-ray telescope to study the object that was originally discovered in 2019. Back then, astronomers already reported that the object has very high wind speeds and is too bright, and therefore too massive, to be an ordinary white dwarf. They suggested that the object is a new type of star that survived the merger of two white dwarfs.

Based on new information from XMM-Newton, Lidia and her team now suggest that what we see in the image is a new type of X-ray source powered by the merger of two white dwarfs. The remnant of the clash — the nebula — is also visible in this image, and is mostly made out of the element neon (shown in green). The star is very unstable and will likely collapse into a neutron star within 10 000 years.

​The Copernicus Sentinel-2 mission takes us over the Tanezrouft Basin — one of the most desolate parts of the Sahara Desert.

Zoom in to see this image at its full 10 m resolution or click on the circles to learn more about the features in this image.

The Tanezrouft is a region of the Sahara lying in southern Algeria and northern Mali. The hyperarid area is known for its soaring temperatures and scarce access to water and vegetation, a reason why it’s often referred to as the ‘Land of Terror’. There are no permanent residents that live here, only occasional Tuareg nomads.

The barren plain extends to the west of the Hoggar Mountains and southeast of the sandy Erg Chech. The terrain shows evidence of water erosion that occurred many years ago, when the Sahara Desert’s climate was much wetter, as well as wind erosion caused by frequent sandstorms — exposing ancient folds in the Paleozoic rocks.

The region is characterized by dark sandstone hills, steep canyon walls, salt flats (visible in white in the image), stone plateaus, and seas of multi-story sand dunes known as ‘ergs’. Concentric rings of exposed sandstone strata create a stunning pattern predominantly visible in the left of the image.

White lines in the right of the image are roads that lead to In Salah — the capital of the In Salah Province and In Salah District. Just above the center-left of the image, an airstrip can be seen. An interesting, grid-like pattern can be seen at the bottom of the image and mostly consists of human-made clearings and roads.

This image, also featured on the Earth from Space video program, was captured on 12 January 2020 by the Copernicus Sentinel-2 mission — a two-satellite mission to supply the coverage and data delivery needed for Europe’s Copernicus program.

Inside one of the containers of this 40-cm-across miniature laboratory in orbit, a battle is set to start between asteroid-like fragments and rock-hungry microbes, to probe their use for space mining in the future.

The University of Edinburgh’s ‘BioAsteroid’ payload is one of the multiple experiments running simultaneously aboard ESA’s Kubik — Russian for cube — facility aboard Europe’s Columbus module of the International Space Station. It found its way to orbit via the new commercial Bioreactor Express Service.

The experimenters want to see how BioAsteroid’s combination of bacteria and fungi interact with the rock in reduced gravity, including to observe whether characteristic ‘biofilms’ will be grown on rock surfaces, comparable to the dental plaque on teeth.

The microbes could in the future be cultivated to help mine resources. So-called bio-mining has potential on Earth and in space exploration to recover economically useful elements from rock, as well as creating fertile soil from lunar dust.

​Technology image of the week

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store